A penalty-free approach to PDE constrained optimization: application to an inverse wave problem

Author:

Hoffmann AlexandreORCID,Monteiller Vadim,Bellis Cédric

Abstract

Abstract Inverse wave problems (IWPs) amount in non-linear optimization problems where a certain distance between a state variable and some observations of a wavefield is to be minimized. Additionally, we require the state variable to be the solution of a model equation that involves a set of parameters to be optimized. Typical approaches to solve IWPs includes the adjoint method, which generates a sequence of parameters and strictly enforces the model equation at each iteration, and, the wavefield reconstruction inversion (WRI) method, which jointly generates a sequence of parameters and state variable but does not strictly enforce the model. WRI is considered to be an interesting approach because, by virtue of not enforcing the model at each iteration, it expands the search space, and can thus find solutions that may not be found by a typical adjoint method. However, WRI techniques generally requires the tuning of a penalty parameter until the model equation is considered satisfied. Alternatively, a fixed penalty parameter can be chosen but, in such case, it is impossible for the algorithm to find a solution that satisfies the model equation exactly. In the present work, we present a, to our knowledge, novel technique of WRI type which jointly generates a sequence of parameters and state variable, and which loosely enforces the model. The method is based on a TR-SQP method which aims at minimizing, at each iteration, both the residual relative to the linearized model and a quadratic approximation of the cost functional. Our method approximately solves a sequence of quadratic subproblems by using a Krylov method. The Hessian-vector product is computed using the second-order adjoint method. The method is demonstrated on a synthetic case, with a configuration relevant to medical imaging.

Funder

Agence Nationale de la Recherche

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3