A unified approach to inversion formulae for vector and tensor ray and radon transforms and the Natterer inequality

Author:

Louis Alfred KORCID

Abstract

Abstract Most derivations of inversion formulae for x-ray or Radon transform are based on the projection theorem, where for fixed direction the Fourier transform of x-ray or Radon transform is calculated and compared with the Fourier transform of the searched-for function. In contrast to this we start here off from the searched-for field, calculate its Fourier transform for fixed direction, which is now a vector or tensor field, that we then expand in a suitable direction dependent basis. The expansion coefficients are recognized as the Fourier transform of longitudinal, transversal or mixed ray transforms or vectorial Radon transform respectively. The inverse Fourier transform of the searched-for field then directly leads to inversion formulae for those transforms applying problem adapted backprojections. When considering the Helmholtz decomposition of the field we immediately find inversion formulae for those transversal or longitudinal transforms. First inversion formulae for the longitudinal ray transform, similar to those given by Natterer (1986 The Mathematics of Computerized Tomography (Teubner and Wiley)) for x-ray tomography, were given by Natterer-Wübbeling in 2001, Natterer and Wübbeling (2001 Mathematical Methods in Image Reconstruction (SIAM)), but then not pursued by other authors. In this paper, we present the above described method and derive in a unified way inversion formulae for the ray transforms treated in Louis (2022 Inverse Problems 38 065008) containing the results from Louis (2022 Inverse Problems 38 065008) as special cases. Additionally we present new inversion formulae for the vectorial Radon transform. As a consequence the inversion formulae directly give Plancherel’s formulae for the vectorial or tensorial transforms. Together with the Natterer inequality, which is independent of the ray or Radon transforms, we present the Natterer stability of those vectorial and tensorial transforms.

Funder

Sino-German Mobility Programme

Deutsche Forschungsgemeinschaft

Hermann and Dr. Charlotte Deutsch Stiftung

Publisher

IOP Publishing

Reference36 articles.

1. Tomographic reconstruction of vector fields;Braun;IEEE Trans. Signal Process.,1991

2. Iterative inversion of the tensor momentum x-ray transform;Denisiuk;Inverse Problems,2023

3. Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve;Denisjuk;Inverse Problems,2006

4. An approach of direct reconstruction of a solenoidal part in vector and tensor tomography problems;Derevstov;J. Inv. Ill-Posed Prob.,2005

5. Certain problems of non-scalar tomography;Derevtsov;Siberian Èlektron. Mat. Izv.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3