Theoretical and numerical studies of inverse source problem for the linear parabolic equation with sparse boundary measurements

Author:

Lin GuangORCID,Zhang Zecheng,Zhang ZhidongORCID

Abstract

Abstract We consider the inverse source problem in the parabolic equation, where the unknown source possesses the semi-discrete formulation. Theoretically, we prove that the flux data from any nonempty open subset of the boundary can uniquely determine the semi-discrete source. This means the observed area can be extremely small, and that is the reason we call it sparse boundary data. For the numerical reconstruction, we formulate the problem from the Bayesian sequential prediction perspective and conduct the numerical examples which estimate the space-time-dependent source state by state. To better demonstrate the method’s performance, we solve two common multiscale problems from two models with a long source sequence. The numerical results illustrate that the inversion is accurate and efficient.

Funder

National Science Foundation

the Fundamental Research Funds for the Central Universities, Sun Yat-sen University

National Natural Science Foundation of China

U.S. Department of Energy

Brookhaven National Laboratory

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference26 articles.

1. Particle Markov chain Monte Carlo methods;Andrieu;J. R. Stat. Soc. B,2010

2. Determination of an unknown heat source from overspecified boundary data source in the heat equation;Cannon;SIAM J. Numer. Anal.,1968

3. An inverse source problem for parabolic equations with local measurements;Cheng;Appl. Math. Lett.,2020

4. Computational multiscale methods for quasi-gas dynamic equations;Chetverushkin;J. Comput. Phys.,2021

5. Multi-agent reinforcement learning accelerated MCMC on multiscale inversion problem;Chung,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3