Error analysis for filtered back projection reconstructions in Besov spaces

Author:

Beckmann M,Maass PORCID,Nickel J

Abstract

Abstract Filtered back projection (FBP) methods are the most widely used reconstruction algorithms in computerized tomography (CT). The ill-posedness of this inverse problem allows only an approximate reconstruction for given noisy data. Studying the resulting reconstruction error has been a most active field of research in the 1990s and has recently been revived in terms of optimal filter design and estimating the FBP approximation errors in general Sobolev spaces. However, the choice of Sobolev spaces is suboptimal for characterizing typical CT reconstructions. A widely used model are sums of characteristic functions, which are better modelled in terms of Besov spaces B q α , p ( R 2 ) . In particular B 1 α , 1 ( R 2 ) with α ≈ 1 is a preferred model in image analysis for describing natural images. In case of noisy Radon data the total FBP reconstruction error f f L δ f f L + f L f L δ splits into an approximation error and a data error, where L serves as regularization parameter. In this paper, we study the approximation error of FBP reconstructions for target functions f L 1 ( R 2 ) B q α , p ( R 2 ) with positive α N and 1 ⩽ p, q ⩽ ∞. We prove that the L p -norm of the inherent FBP approximation error ff L can be bounded above by f f L L p ( R 2 ) c α , q , W L α | f | B q α , p ( R 2 ) under suitable assumptions on the utilized low-pass filter’s window function W. This then extends by classical methods to estimates for the total reconstruction error.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fourier-Domain Inversion for the Modulo Radon Transform;IEEE Transactions on Computational Imaging;2024

2. Foreword to special issue of Inverse Problems on modern challenges in imaging;Inverse Problems;2023-02-03

3. Open structure magnetic particle imaging by nonlinear back projection tomography reconstruction;Biomedical Engineering / Biomedizinische Technik;2022-12-30

4. MR. TOMP : Inversion of the Modulo Radon Transform (MRT) via Orthogonal Matching Pursuit (OMP);2022 IEEE International Conference on Image Processing (ICIP);2022-10-16

5. The Modulo Radon Transform: Theory, Algorithms, and Applications;SIAM Journal on Imaging Sciences;2022-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3