Adaptive minimax optimality in statistical inverse problems via SOLIT—Sharp Optimal Lepskiĭ-Inspired Tuning

Author:

Li HousenORCID,Werner FrankORCID

Abstract

Abstract We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form f ˆ α = q α T T T Y , where Y is the available data, T the forward operator, q α α A an ordered filter, and α > 0 a regularization parameter. Whenever such a method is used in practice, α has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible α in the sense that mean squared error (MSE) E [ f ˆ α f 2 ] w.r.t. the true solution f is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an a posteriori parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on Y and the noise level σ as well as the operator T and the filter q α α A and does not require any problem-dependent tuning of further parameters. We prove an oracle inequality for the corresponding MSE in a general setting and derive the rates of convergence in different scenarios. By a careful analysis we show that no other a posteriori parameter choice rule can yield a better performance in terms of the order of the convergence rate of the MSE. In particular, our results reveal that the typical understanding of Lepskiĭ-type methods in inverse problems leading to a loss of a log factor is wrong. In addition, the empirical performance of SOLIT is examined in simulations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3