Matrix recovery from nonconvex regularized least absolute deviations

Author:

Xu Jiao,Li PengORCID,Zheng Bing

Abstract

Abstract In this paper, we consider the low-rank matrix recovery problem. We propose the nonconvex regularized least absolute deviations model via 1 α 2 ( 0 < α < 1 ) minimization. We establish the theoretical analysis of the proposed model and obtain a stable error estimation. Our result is a nontrivial extension of some previous work. Different from most of the state-of-the-art methods, our method does not need any knowledge of standard deviation or any moment assumption of the noise. Numerical experiments show that our method is effective for many types of noise distributions.

Funder

Science and Technology Program of Gansu Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference57 articles.

1. Convex multi-task feature learning;Argyriou;Mach. Learn.,2008

2. Convex analysis approach to d.c. programming: theory, algorithms and applications;Ato;Acta Math. Vietnamica,1997

3. Asymptotic theory of least absolute error regression;Bassett;J. Am. Stat. Assoc.,1978

4. Simultaneous analysis of lasso and dantzig selector;Bickel;Ann. Stat.,2009

5. Least absolute deviations curve-fitting;Bloomfield;SIAM J. Sci. Stat. Comput.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3