Abstract
Abstract
In this work we investigate an inverse problem of recovering a time-dependent potential in a semilinear subdiffusion model from an integral measurement of the solution over the domain. The model involves the Djrbashian–Caputo fractional derivative in time. Theoretically, we prove a novel conditional Lipschitz stability result, and numerically, we develop an easy-to-implement fixed point iteration for recovering the unknown coefficient. In addition, we establish rigorous error bounds on the discrete approximation. These results are obtained by crucially using smoothing properties of the solution operators and suitable choice of a weighted
L
p
(
0
,
T
)
norm. The efficiency and accuracy of the scheme are showcased on several numerical experiments in one- and two-dimensions.
Funder
National Research Foundation of Korea
Hong Kong Polytechnic University
Subject
Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献