Abstract
Abstract
In this paper, we consider an inverse problem of determining two space dependent ionic parameters of a strongly coupled parabolic-elliptic reaction–diffusion system arising in cardiac electrophysiology modeling when simulating drugs action with multi-electrode array/human induced pluripotent stem cells-cardiomyocytes assays. We use the bidomain model coupled to an ordinary differential equation and we consider the classical phenomenological model in cardiac electrophysiology of FitzHugh–Nagumo to describe the ionic exchanges at the microscopic level. Our main result is the uniqueness and a Lipschitz stability estimate for two ionic parameters
(
k
,
γ
)
of the model using sub-boundary observations over an interval of time. The key ingredients are a global Carleman-type estimates with a suitable observations acting on a part of the boundary.
Funder
Tunisian Ministry of Higher Education, Scientific Research and Technology
SPICY
INRIA
Subject
Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献