Chilled sampling for uncertainty quantification: a motivation from a meteorological inverse problem *

Author:

Héas PORCID,Cérou F,Rousset M

Abstract

Abstract Atmospheric motion vectors (AMVs) extracted from satellite imagery are the only wind observations with good global coverage. They are important features for feeding numerical weather prediction (NWP) models. Several Bayesian models have been proposed to estimate AMVs. Although critical for correct assimilation into NWP models, very few methods provide a thorough characterization of the estimation errors. The difficulty of estimating errors stems from the specificity of the posterior distribution, which is both very high dimensional, and highly ill-conditioned due to a singular likelihood, which becomes critical in particular in the case of missing data (unobserved pixels). Motivated by this difficult inverse problem, this work studies the evaluation of the (expected) estimation errors using gradient-based Markov chain Monte Carlo (MCMC) algorithms. The main contribution is to propose a general strategy, called here ‘chilling’, which amounts to sampling a local approximation of the posterior distribution in the neighborhood of a point estimate. From a theoretical point of view, we show that under regularity assumptions, the family of chilled posterior distributions converges in distribution as temperature decreases to an optimal Gaussian approximation at a point estimate given by the maximum a posteriori, also known as the Laplace approximation. Chilled sampling therefore provides access to this approximation generally out of reach in such high-dimensional nonlinear contexts. From an empirical perspective, we evaluate the proposed approach based on some quantitative Bayesian criteria. Our numerical simulations are performed on synthetic and real meteorological data. They reveal that not only the proposed chilling exhibits a significant gain in terms of accuracy of the AMV point estimates and of their associated expected error estimates, but also a substantial acceleration in the convergence speed of the MCMC algorithms.

Funder

ANR Centre Henri Lebesgue

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference49 articles.

1. Geometric MCMC for infinite-dimensional inverse problems;Beskos;J. Comput. Phys.,2017

2. MCMC methods for sampling function space;Beskos,2009

3. Winds of change for future operational AMV at EUMETSAT;Borde;Remote Sens.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3