Error estimates for Golub–Kahan bidiagonalization with Tikhonov regularization for ill–posed operator equations

Author:

Alqahtani A,Ramlau RORCID,Reichel LORCID

Abstract

Abstract Linear ill-posed operator equations arise in various areas of science and engineering. The presence of errors in the operator and the data often makes the computation of an accurate approximate solution difficult. In this paper, we compute an approximate solution of an ill-posed operator equation by first determining an approximation of the operators of generally fairly small dimension by carrying out a few steps of a continuous version of the Golub–Kahan bidiagonalization process to the noisy operator. Then Tikhonov regularization is applied to the low-dimensional problem so obtained and the regularization parameter is determined by solving a low-dimensional nonlinear equation. The effect of the errors incurred in each step of the solution process is analyzed. Computed examples illustrate the theory presented.

Funder

NSF grant

Austrian Science Fund

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3