Bayesian view on the training of invertible residual networks for solving linear inverse problems *

Author:

Arndt ClemensORCID,Dittmer Sören,Heilenkötter NickORCID,Iske MeiraORCID,Kluth TobiasORCID,Nickel JudithORCID

Abstract

Abstract Learning-based methods for inverse problems, adapting to the data’s inherent structure, have become ubiquitous in the last decade. Besides empirical investigations of their often remarkable performance, an increasing number of works address the issue of theoretical guarantees. Recently, Arndt et al (2023 Inverse Problems 39 125018) exploited invertible residual networks (iResNets) to learn provably convergent regularizations given reasonable assumptions. They enforced these guarantees by approximating the linear forward operator with an iResNet. Supervised training on relevant samples introduces data dependency into the approach. An open question in this context is to which extent the data’s inherent structure influences the training outcome, i.e. the learned reconstruction scheme. Here, we address this delicate interplay of training design and data dependency from a Bayesian perspective and shed light on opportunities and limitations. We resolve these limitations by analyzing reconstruction-based training of the inverses of iResNets, where we show that this optimization strategy introduces a level of data-dependency that cannot be achieved by approximation training. We further provide and discuss a series of numerical experiments underpinning and extending the theoretical findings.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Reference28 articles.

1. Deep Bayesian inversion;Adler,2018

2. Learning the optimal tikhonov regularizer for inverse problems;Alberti,2021

3. Invertible residual networks in the context of regularization theory for linear inverse problems;Arndt;Inverse Problems,2023

4. Solving inverse problems using data-driven models;Arridge;Acta Numer.,2019

5. Invertible residual networks;Behrmann,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3