Adaptive Bregman–Kaczmarz: an approach to solve linear inverse problems with independent noise exactly

Author:

Tondji LionelORCID,Tondji Idriss,Lorenz DirkORCID

Abstract

Abstract We consider the block Bregman–Kaczmarz method for finite dimensional linear inverse problems. The block Bregman–Kaczmarz method uses blocks of the linear system and performs iterative steps with these blocks only. We assume a noise model that we call independent noise, i.e. each time the method performs a step for some block, one obtains a noisy sample of the respective part of the right-hand side which is contaminated with new noise that is independent of all previous steps of the method. One can view these noise models as making a fresh noisy measurement of the respective block each time it is used. In this framework, we are able to show that a well-chosen adaptive stepsize of the block Bregman–Kaczmarz method is able to converge to the exact solution of the linear inverse problem. The plain form of this adaptive stepsize relies on unknown quantities (like the Bregman distance to the solution), but we show a way how these quantities can be estimated purely from given data. We illustrate the finding in numerical experiments and confirm that these heuristic estimates lead to effective stepsizes.

Funder

H2020 European Research Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3