Linearized boundary control method for an acoustic inverse boundary value problem

Author:

Oksanen Lauri,Yang TianyuORCID,Yang YangORCID

Abstract

Abstract We develop a linearized boundary control method for the inverse boundary value problem of determining a potential in the acoustic wave equation from the Neumann-to-Dirichlet map. When the linearization is at the zero potential, we derive a reconstruction formula based on the boundary control method and prove that it is of Lipschitz-type stability. When the linearization is at a nonzero potential, we prove that the problem is of Hölder-type stability in two and higher dimensions. The proposed reconstruction formula is implemented and evaluated using several numerical experiments to validate its feasibility.

Funder

Division of Mathematical Sciences

Michigan State University

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference38 articles.

1. Lorentzian Calderón problem near the Minkowski geometry;Alexakis,2021

2. Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem;Anderson;Invent. Math.,2004

3. On an approach to multidimensional inverse problems for the wave equation;Belishev;Sov. Math. Dokl,1988

4. Dynamical variant of the BC-method: theory and numerical testing;Belishev;J. Inverse Ill-Posed Problems,1999

5. Recent progress in the boundary control method;Belishev;Inverse Problems,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3