On Calderón’s inverse inclusion problem with smooth shapes by a single partial boundary measurement

Author:

Liu HongyuORCID,Tsou Chun-HsiangORCID,Yang Wei

Abstract

Abstract We consider Calderón’s inverse inclusion problem of recovering the shape of an anomalous inhomogeneity embedded in a homogeneous conductivity by the associated electric boundary measurements. It is a longstanding problem whether one can establish the unique recovery result by a single boundary measurement. In several existing works, it is shown that corner singularities can help to resolve the problem within polygonal or polyhedral shapes. In this paper, under a generic technical condition, we show that the corner singularity can be relaxed to be a certain high-curvature condition and derive novel unique recovery results within smooth shapes.

Funder

University Grants Committee

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference45 articles.

1. An identification problem for an elliptic equation in two variables;Alessandrini;Ann. Math. Appl.,1986

2. Generic uniqueness and size estimates in the inverse conductivity problem with one measurement;Alessandrini;Matematiche,1999

3. Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities;Alessandrini;Inverse Problems,2017

4. Analyticity and uniqueness for the inverse conductivity problem;Alessandrini;Rend. Ist. Math. Univ. Trieste,1996

5. Local uniqueness in the inverse conductivity problem with one measurement;Alessandrini;Trans. Am. Math. Soc.,1995

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying Active Anomalies in a Multilayered Medium by Passive Measurement in EIT;SIAM Journal on Applied Mathematics;2024-07-01

2. Interior Transmission Resonance;Spectral Theory of Localized Resonances and Applications;2024

3. Localized Resonances for Anisotropic Geometry;Spectral Theory of Localized Resonances and Applications;2024

4. Numerical Inverse Acoustic Scattering Problems;Numerical Methods for Inverse Scattering Problems;2023

5. Lipschitz Stable Determination of Polyhedral Conductivity Inclusions from Local Boundary Measurements;SIAM Journal on Mathematical Analysis;2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3