Radial recombination for rigid rotational alignment of images and volumes

Author:

Rangan Aaditya VORCID

Abstract

Abstract A common task in single particle electron cryomicroscopy (cryo-EM) is the rigid alignment of images and/or volumes. In the context of images, a rigid alignment involves estimating the inner product between one image of N × N pixels and another image that has been translated by some displacement and rotated by some angle γ. In many situations the number of rotations γ considered is large (e.g. ), while the number of translations considered is much smaller (e.g. ). In these scenarios a naive algorithm requires operations to calculate the array of inner products for each image pair. This computation can be accelerated by using a Fourier–Bessel basis and the fast Fourier transform, requiring only operations per image pair. We propose a simple data driven compression algorithm to further accelerate this computation, which we refer to as the ‘radial SVD’. Our approach involves linearly recombining the different rings of the original images (expressed in polar coordinates), taking advantage of the singular value decomposition (SVD) to both compress the images and optimize a certain measure of angular discriminability. When aligning multiple images to multiple targets, the complexity of our approach is O ( N ( log ( N ) + H ) ) per image pair, where H is the rank of the SVD used in the compression above. A very similar strategy can be used to accelerate volume alignment, using a spherical harmonic based compression, which we will refer to as a ‘degree SVD’. The advantage gained by these approaches depends on the ratio between H and N; the smaller H is the better. In many applications H can be quite a bit smaller than N while still maintaining accuracy. We present numerical results in a cryo-EM application demonstrating that the radial and degree SVD can help save a factor of 5–10 or more for both image and volume alignment.

Funder

Flatiron Institute, New York, NY

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference50 articles.

1. Biomedical volume alignment using an efficient optimization method and fast data resampling;Capek,2003

2. Image alignment and stitching: a tutorial;Szeliski;Found. Trends Comput. Graph. Vis.,2006

3. A method for the alignment of heterogeneous macromolecules from electron microscopy;Shatsky;J. Struct. Biol.,2009

4. A primer to single-particle cryo-electron microscopy;Cheng;Cell,2015

5. Cryo-EM: a unique tool for the visualization of macromolecular complexity;Nogales;Mol. Cell,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3