Minimizing L 1 over L 2 norms on the gradient

Author:

Wang ChaoORCID,Tao MinORCID,Chuah Chen-NeeORCID,Nagy JamesORCID,Lou YifeiORCID

Abstract

Abstract In this paper, we study the L 1/L 2 minimization on the gradient for imaging applications. Several recent works have demonstrated that L 1/L 2 is better than the L 1 norm when approximating the L 0 norm to promote sparsity. Consequently, we postulate that applying L 1/L 2 on the gradient is better than the classic total variation (the L 1 norm on the gradient) to enforce the sparsity of the image gradient. Numerically, we design a specific splitting scheme, under which we can prove subsequential and global convergence for the alternating direction method of multipliers (ADMM) under certain conditions. Experimentally, we demonstrate visible improvements of L 1/L 2 over L 1 and other nonconvex regularizations for image recovery from low-frequency measurements and two medical applications of magnetic resonance imaging and computed tomography reconstruction. Finally, we reveal some empirical evidence on the superiority of L 1/L 2 over L 1 when recovering piecewise constant signals from low-frequency measurements to shed light on future works.

Funder

Research Grants Council, University Grants Committee

Division of Mathematical Sciences

National Institutes of Health

Natural Science Foundation of Jiangsu Province

Division of Computing and Communication Foundations

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3