Abstract
Abstract
Microtexture regions (MTRs) are collections of grains with similar crystallographic orientation. Because their presence in titanium alloys can significantly impact aerospace component life, a nondestructive method to detect and characterize MTR is needed. In this work, we propose to use data from two nondestructive evaluation methods, eddy current testing (ECT) and scanning acoustic microscopy (SAM), in order to recover the boundary and dominant crystallographic orientation of each MTR in a specimen. ECT is an electromagnetic method that is sensitive to changes in crystallographic orientation associated with MTR; however, its low resolution prevents it from resolving MTR boundaries well. In contrast, SAM is a high frequency ultrasound method that is able to resolve MTR boundaries but is not sensitive to orientation. This paper proposes an algorithm to characterize MTR that makes use of a method known as covariance generalized matching component analysis. This method is used to build a surrogate linear forward model that relates MTR boundaries and orientation to ECT data. The model is inverted using the SAM data as a structural prior. We demonstrate this technique using simulated ECT and experimental SAM data from a large grain titanium specimen.
Funder
Air Force Office of Scientific Research
Materials and Manufacturing Directorate