Levenberg–Marquardt method for ill-posed inverse problems with possibly non-smooth forward mappings between Banach spaces

Author:

Nhu Vu HuuORCID

Abstract

Abstract In this paper, we consider a Levenberg–Marquardt method with general regularization terms that are uniformly convex on bounded sets to solve the ill-posed inverse problems in Banach spaces, where the forward mapping might not Gâteaux differentiable and the image space is unnecessarily reflexive. The method therefore extends the one proposed by Jin and Yang in (2016 Numer. Math. 133 655–684) for smooth inverse problem setting with globally uniformly convex regularization terms. We prove a novel convergence analysis of the proposed method under some standing assumptions, in particular, the generalized tangential cone condition and a compactness assumption. All these assumptions are fulfilled when investigating the identification of the heat source for semilinear elliptic boundary-value problems with a Robin boundary condition, a heat source acting on the boundary, and a possibly non-smooth nonlinearity. Therein, the Clarke subdifferential of the non-smooth nonlinearity is employed to construct the family of bounded operators that is a replacement for the non-existing Gâteaux derivative of the forward mapping. The efficiency of the proposed method is illustrated with a numerical example.

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3