Translation invariant diagonal frame decomposition of inverse problems and their regularization

Author:

Göppel Simon,Frikel JürgenORCID,Haltmeier MarkusORCID

Abstract

Abstract Solving inverse problems is central to a variety of important applications, such as biomedical image reconstruction and non-destructive testing. These problems are characterized by the sensitivity of direct solution methods with respect to data perturbations. To stabilize the reconstruction process, regularization methods have to be employed. Well-known regularization methods are based on frame expansions, such as the wavelet–vaguelette decomposition, which are well adapted to the underlying signal class and the forward model and furthermore allow efficient implementation. However, it is well known that the lack of translational invariance of wavelets and related systems leads to specific artifacts in the reconstruction. To overcome this problem, in this paper we introduce and analyze the translation invariant diagonal frame decomposition (TI-DFD) of linear operators as a novel concept generalizing the singular value decomposition. We characterize ill-posedness via the TI-DFD and prove that a TI-DFD combined with a regularizing filter leads to a convergent regularization method with optimal convergence rates. As illustrative example, we construct a wavelet-based TI-DFD for one-dimensional integration, where we also investigate our approach numerically. The results indicate that filtered TI-DFDs eliminate the typical wavelet artifacts when using standard wavelets and provide a fast, accurate, and stable solution scheme for inverse problems.

Funder

European Union

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference30 articles.

1. Numerical differentiation procedures for non-exact data;Anderssen;Numer. Math.,1974

2. Recovering edges in ill-posed inverse problems: optimality of curvelet frames;Candès;Ann. Stat.,2002

3. Translation-invariant de-noising;Coifman,1995

4. Radon transform inversion using the shearlet representation;Colonna;Appl. Comput. Harmon. Anal.,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3