On block accelerations of quantile randomized Kaczmarz for corrupted systems of linear equations

Author:

Cheng Lu,Jarman BenjaminORCID,Needell Deanna,Rebrova Elizaveta

Abstract

Abstract With the growth of large data as well as large-scale learning tasks, the need for efficient and robust linear system solvers is greater than ever. The randomized Kaczmarz method (RK) and similar stochastic iterative methods have received considerable recent attention due to their efficient implementation and memory footprint. These methods can tolerate streaming data, accessing only part of the data at a time, and can also approximate the least squares solution even if the system is affected by noise. However, when data is instead affected by large (possibly adversarial) corruptions, these methods fail to converge, as corrupted data points draw iterates far from the true solution. A recently proposed solution to this is the quantileRK method, which avoids harmful corrupted data by exploring the space carefully as the method iterates. The exploration component requires the computation of quantiles of large samples from the system and is computationally much heavier than the subsequent iteration update. In this paper, we propose an approach that better uses the information obtained during exploration by incorporating an averaged version of the block Kaczmarz method. This significantly speeds up convergence, while still allowing for a constant fraction of the equations to be arbitrarily corrupted. We provide theoretical convergence guarantees as well as experimental supporting evidence. We also demonstrate that the classical projection-based block Kaczmarz method cannot be robust to sparse adversarial corruptions, but rather the blocking has to be carried out by averaging one-dimensional projections.

Funder

Division of Mathematical Sciences

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference31 articles.

1. Angenäherte auflösung von systemen linearer Gleichungen;Kaczmarz;Bull. Int. Acad. Polon. Sci. Lett. Ser. A,1937

2. Computerized transverse axial scanning (tomography): Part I. description of the system;Hounsfield;British J. Radiol.,1973

3. Block-iterative methods for consistent and inconsistent linear equations;Elfving;Numer. Math.,1980

4. Strong underrelaxation in Kaczmarz’s method for inconsistent systems;Censor;Numer. Math.,1983

5. Block-projections algorithms with blocks containing mutually orthogonal rows and columns;Popa;BIT,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3