Solving inverse scattering problems via reduced-order model embedding procedures

Author:

Zimmerling Jörn,Druskin Vladimir,Guddati Murthy,Cherkaev Elena,Remis RobORCID

Abstract

Abstract We present a reduced-order model (ROM) methodology for inverse scattering problems in which the ROMs are data-driven, i.e. they are constructed directly from data gathered by sensors. Moreover, the entries of the ROM contain localised information about the coefficients of the wave equation. We solve the inverse problem by embedding the ROM in physical space. Such an approach is also followed in the theory of ‘optimal grids,’ where the ROMs are interpreted as two-point finite-difference discretisations of an underlying set of equations of a first-order continuous system on this special grid. Here, we extend this line of work to wave equations and introduce a new embedding technique, which we call Krein embedding, since it is inspired by Krein’s seminal work on vibrations of a string. In this embedding approach, an adaptive grid and a set of medium parameters can be directly extracted from a ROM and we show that several limitations of optimal grid embeddings can be avoided. Furthermore, we show how Krein embedding is connected to classical optimal grid embedding and that convergence results for optimal grids can be extended to this novel embedding approach. Finally, we also briefly discuss Krein embedding for open domains, that is, semi-infinite domains that extend to infinity in one direction.

Funder

NSF

AFOSR

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3