An inverse random source problem for the one-dimensional Helmholtz equation with attenuation

Author:

Li PeijunORCID,Wang XuORCID

Abstract

Abstract This paper is concerned with an inverse random source problem for the one-dimensional stochastic Helmholtz equation with attenuation. The source is assumed to be a microlocally isotropic Gaussian random field with its covariance operator being a classical pseudo-differential operator. The random sources under consideration are equivalent to the generalized fractional Gaussian random fields which include rough fields and can be even rougher than the white noise, and hence should be interpreted as distributions. The well-posedness of the direct source problem is established in the distribution sense. The micro-correlation strength of the random source, which appears to be the strength in the principal symbol of the covariance operator, is proved to be uniquely determined by the wave field in an open measurement set. Numerical experiments are presented for the white noise model to demonstrate the validity and effectiveness of the proposed method.

Funder

Division of Mathematical Sciences

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference26 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-rank solutions to the stochastic Helmholtz equation;Journal of Computational and Applied Mathematics;2024-10

2. Stability for Time-Domain Elastic Wave Equations;SIAM Journal on Mathematical Analysis;2024-01-08

3. A Data-Assisted Two-Stage Method for the Inverse Random Source Problem;SIAM Journal on Imaging Sciences;2023-10-12

4. Inverse Source Problems for the Stochastic Wave Equations: Far-Field Patterns;SIAM Journal on Applied Mathematics;2022-07-11

5. An inverse source problem for the stochastic wave equation;Inverse Problems & Imaging;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3