Assessing the potential of using a virtual Veselago lens in quantitative microwave imaging

Author:

Eini Keleshteri MarziehORCID,Okhmatovski Vladimir,Jeffrey Ian,Bevacqua Martina TeresaORCID,LoVetri JoeORCID

Abstract

Abstract This study explores the potential of implementing the focusing properties of a virtual ideal Veselago lens within a standard free-space microwave imaging scenario. To achieve this, the virtual lens is introduced as an inhomogeneous numerical background for the inverse source problem. This numerical Vesealgo lens is incorporated into the incident and scattered field decomposition, resulting in a new data equation that involves the Veselago lens Green’s function. In addition to the contrast sources within the object-of-interest, the lens introduces virtual contrast sources along the lens boundaries that depend on the total tangential magnetic field. It is shown that a surface integral contribution that takes into account these surface contrast sources must be added to the collected free-space data before one can invert using the well-conditioned Veselago lens inversion operator. A preliminary investigation of the accuracy to which this surface integral contribution must be computed is performed using additive Gaussian noise. Results show that an error of less than one percent is required to achieve imaging performance similar to utilizing an actual Veselago lens. All results are performed within a 2D simulation environment.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference37 articles.

1. Breast imaging using microwave tomography with radar-based tissue-regions estimation;Baran;Prog. Electromagn. Res.,2014

2. Tumor tracking with microwave breast imaging using refined patient specific prior information;Kurrant,2015

3. Electromagnetic inversion for biomedical imaging, antenna characterization and sea ice remote sensing applications;Mojabi,2016

4. On the opportunities and challenges in microwave medical sensing and imaging;Chandra;IEEE Trans. Biomed. Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3