Adaptively sketched Bregman projection methods for linear systems

Author:

Yuan Zi-YangORCID,Zhang Lu,Wang Hongxia,Zhang Hui

Abstract

Abstract The sketch-and-project, as a general archetypal algorithm for solving linear systems, unifies a variety of randomized iterative methods such as the randomized Kaczmarz and randomized coordinate descent. However, since it aims to find a least-norm solution from a linear system, the randomized sparse Kaczmarz can not be included. This motivates us to propose a more general framework, called sketched Bregman projection (SBP) method, in which we are able to find solutions with certain structures from linear systems. To generalize the concept of adaptive sampling to the SBP method, we show how the progress, measured by Bregman distance, of single step depends directly on a sketched loss function. Theoretically, we provide detailed global convergence results for the SBP method with different adaptive sampling rules. At last, for the (sparse) Kaczmarz methods, a group of numerical simulations are tested, with which we verify that the methods utilizing sampling Kaczmarz–Motzkin rule demands the fewest computational costs to achieve a given error bound comparing to the corresponding methods with other sampling rules.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference25 articles.

1. Angenäherte auflösung von systemen lenearer gleichungen;Kaczmarz;Bull. Int. Acad. Pol. Sci. Lett. A,1937

2. A randomized Kaczmarz algorithm with exponential convergence;Strohmer;J. Fourier Anal. Appl.,2009

3. Linear convergence of the randomized sparse Kaczmarz method;Schöpfer;Math. Program.,2019

4. A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing;Lorenz,2014

5. Randomized Kaczmarz algorithms: exact mse analysis and optimal sampling probabilities;Agaskar,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3