Nearly optimal bounds for the global geometric landscape of phase retrieval

Author:

Cai Jian-Feng,Huang MengORCID,Li DongORCID,Wang Yang

Abstract

Abstract The phase retrieval problem is concerned with recovering an unknown signal x C n from a set of magnitude-only measurements y j = a j , x , j = 1 , , m . A natural least squares formulation can be used to solve this problem efficiently even with random initialization, despite its non-convexity of the loss function. One way to explain this surprising phenomenon is the benign geometric landscape: (1) all local minimizers are global; and (2) the objective function has a negative curvature around each saddle point and local maximizer. In this paper, we show that m = O ( n log n ) Gaussian random measurements are sufficient to guarantee the loss function of a commonly used estimator has such benign geometric landscape with high probability. This is a step toward answering the open problem given by Sun et al (2018 Found. Comput. Math. 18 1131–98), in which the authors suggest that O ( n log n ) or even O(n) is enough to guarantee the favorable geometric property.

Funder

Hong Kong Research Grant Council grants

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference40 articles.

1. Geometry of the phase retrieval problem;Barnett;Inverse Problems,2020

2. Global optimality of local search for low rank matrix recovery;Bhojanapalli,2016

3. Solving phase retrieval with random initial guess is nearly as good as by spectral initialization;Cai;Appl. Comput. Harmon. Anal.,2022

4. The global landscape of phase retrieval I: perturbed amplitude models;Cai;Ann. Appl. Math.,2021

5. The global landscape of phase retrieval II: quotient intensity models;Cai;Ann. Appl. Math.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong Convexity of Affine Phase Retrieval;IEEE Transactions on Signal Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3