Online nonlinearity elimination for fringe projection profilometry using slope intensity coding

Author:

Wan YingyingORCID,Tang Tao,Li Jinlong,Yang Kai,Zhang YuORCID,Peng JianpingORCID

Abstract

Abstract The nonlinearity effect in the system of fringe projection profilometry can cause the non-sinusoidal deviation of the fringe patterns, inducing ripple-like phase errors and further affecting measurement accuracy. This paper presents an online nonlinearity elimination method based on slope intensity coding. Two sequences of sinusoidal phase-shifting fringe patterns with different frequencies, and one slope intensity pattern with one uniform intensity pattern are projected. The equations for the nonlinearity response are established using the defined mean and modulation parameters, the captured uniform intensity and two extracted background intensities. The nonlinearity response coefficients determined by solving the equations are used for pixel-wise nonlinearity correction on the captured images, which are employed for computing the wrapped phase, and further obtaining continuous phase by the multi-frequency phase unwrapping method. Experimental results demonstrate that the proposed method can eliminate the nonlinearity-induced phase error online by using fewer images and maintain the reliability of phase unwrapping in the measurement of isolated objects with complex surfaces.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3