Modelling technique and analysis of porous anti-reflective coatings for reducing wide angle reflectance of thin-film solar cells

Author:

Pickering TimothyORCID,Shanks KatieORCID,Sundaram Senthil

Abstract

Abstract Bio-inspired anti-reflective (AR) coatings with porous graded refractive index structures are known to considerably reduce the reflectance of light at optical interfaces, however, research is lacking for thin-film cell application. Ray Tracing software coupled with the Effective Medium Theory were used to simulate the reflectance of nanostructured coatings placed above a thin-film system. The most optimal coating was paraboloid-shaped, with 300 nm nipple heights and spacings of 15%. The non-zero refractive index ‘step’ aids light trapping and energy absorption. This coating reduced reflectance in the λ = 300–800 nm range by an average of 2.665% and 11.36% at 0 and 80 incident light, respectively, whilst increasing annual energy output by 4.39% and 5.39% for standard UK roof and vertical window tilts, respectively. Significant wide angle reflectance capabilities are demonstrated at specifically λ = 300 nm and 80 incident light, with a reflectance reduction of 19.192%. There are now many promising manufacturing techniques for these porous nanostructures, such as AR or wavelength filtering coatings for photovoltaics. Further understanding of the exact parameters needed to replicate these nanostructures must be explored to proceed.

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3