Abstract
Abstract
A photonic nanojet (PNJ) from a microcavity is a narrow and intense beam of light used to enhance the emerging electric field. Metal nanoparticles (NPs), on the other hand, confine a strong field in their vicinity due to the resonance of the free electrons with the incident field. A hybrid combination of a microcavity with a NP can drastically enhance the output field. In this work, a systematic numerical study of the microcavity-NP system has been carried out to investigate the effect of the shape of the metal NPs on the output field strength. The single and their dimer NPs with different dimer nanogaps with PNJ producing microcavity have been investigated. Splitting of the broad dipole mode of the NP has also been observed. As an application of this study, the surface enhanced Raman spectroscopy factor of the order of 107 has been estimated for nano-cube dimer NP-microcavity hybrid system.
Funder
Science and Engineering Research Board, New Delhi
Ministry of Education, Government of India
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献