Abstract
Abstract
We find that the phase-space representation of the electromagnetic field inside a driven cavity strongly coupled to a two-level atom can be employed to distinguish photon emissions along a ladder of dressed states sustaining a two-photon resonance. The emissions are told apart by means of the different quantum beats generated by the conditional states they prepare. Sample quantum trajectories explicitly reveal the difference in the transient due to the initial condition, in a background set by the Jaynes–Cummings spectrum and revealed by the strong-coupling limit. Their ensemble-averaged evolution is tracked for a time period similar to that waited for the loss of a next photon as the maximum non-exclusive probability, indicated by the peak of the intensity correlation function.
Funder
Swedish Research Council
FIDEUA
R&D
Generalitat de Catalunya
Knut and Alice Wallenberg foundation
Agencia Estatal de Investigación
AGAUR
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献