Beam profile and pulse width assessment in an engineered D-shaped hollow-core photonic crystal fiber

Author:

Saeedizadeh Reza,Sabouri Saeed GhavamiORCID,Khorsandi AlirezaORCID

Abstract

Abstract In this work, a theoretical model is discussed to investigate the performance of a core-engineered gas-filled hollow-core photonic crystal fiber (HC-PCF). To gain the shortest pulse width and the best beam quality at the output, the core geometry of the fiber is modified within four specific types referred to as type I to type IV fibers. It is found that, by using type III and type IV HC-PCF devices, a 5 ps laser pulse in the input can be respectively compressed to 18.5 fs and 13.7 fs at the output. It is found that, a 5-ps laser pulse in the input can be reduced to 18.5 fs and 13.7 fs if type III- and type IV of modified HC-PCF device are respectively used for compression. The structural similarity (SSIM) index is used to evaluate the quality of the beam cross-section that ultimately emerges from the end of the fiber. The results suggest that the highest SSIM value of 0.76 can be obtained if type III HC-PCF is employed for pulse compression.

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3