X-type vortex and its effect on beam shaping

Author:

Pang XiaoyanORCID,Xiao Weiwei,Zhang Han,Feng Chen,Zhao XinyingORCID

Abstract

Abstract In this article we propose a new type of optical vortex, the X-type vortex. This vortex inherits and develops the conventional noncanonical vortex, i.e. it no longer has a constant phase gradient around the center, while the intensity keeps invariant azimuthally. The strongly focusing properties of the X-type vortex and its effect on the beam shaping in three-dimensional (3D) fields are analyzed. The interesting phenomena, which cannot be seen in canonical vortices, are observed, for instance the ‘switch effect’ which shows that the intensity pattern can switch from one transverse axis to another in the focal plane by controlling the phase gradient parameter. It is shown that by adjusting the phase gradient of this vortex, the focal field can have marvelous patterns, from the doughnut shape to the shapes with different lobes, and the beam along propagation direction will form a twisting shape in 3D space with controllable rotation direction and location. The physical mechanisms underlying the rule of the beam shaping are also discussed, which generally say that the phase gradient of the X-type vortex, the orbital angular momentum, the polarization and the ‘nongeneric’ characteristic contribute differently in shaping fields. This new type of vortex may supply a new freedom for tailoring 3D optical fields, and our work will pave a way for exploration of new vortices and their applications.

Funder

Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference43 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3