Orbital angular momentum optical communications enhanced by artificial intelligence

Author:

Li Baoli,Luan Haitao,Li Keyao,Chen Qinyu,Meng Weijia,Cheng Ke,Gu Min,Fang XinyuanORCID

Abstract

Abstract Angular momentum of light can be divided into spin angular momentum and orbital angular momentum (OAM). Due to the theoretically unlimited orthogonal states, the physical dimension of OAM provides a potential solution to boost the information capacity. The OAM multiplexing and modulation techniques have been implemented to meet the continuous growth of bandwidth requirements, resulting in the concept of OAM optical communication. However, the performances of the traditional optical OAM detection techniques degrade seriously in the practical application of OAM optical communications. Thanks to the powerful data analysis advantages, the cutting-edge machine learning (ML) algorithms have been widely used in the field of image processing, laying the technical foundation for OAM recognition. This paper reviews the recent advances on OAM optical communications that are enhanced by ML methods. More than the traditional OAM detection methods, the OAM demodulation methods based on multiple network architectures, including the support vector machine, self-organizing map, feed-forward neural network, convolutional neural network, and diffractive deep optical neural network (D2NN), have been summarized. We also discuss the development of the spiking neural network and on-chip D2NN, opening a possible way to facilitate the future ultra-low power and ultra-fast OAM demodulation technology.

Funder

Science and Technology Commission of Shanghai Municipality

the Shanghai Municipal Science and Technology Major Project, the Shanghai Frontiers Science Center Program

National Natural Science Foundation of China

Shanghai Rising-Star Program

Shanghai Education Development Foundation

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3