Revisiting anapoles in a single high-index dielectric structure

Author:

Wang Longxiao,Huang LujunORCID

Abstract

Abstract High-index dielectric structures support electric and magnetic Mie resonance. Through careful manipulation of geometric parameters, destructive interference can be induced between electric multipole moments and toroidal multipole moments. This leads to the formation of anapoles, which are characterized by quenched scattering in the far field and giant enhancement in the near field. Here, we revisit the formation mechanism of anapole states in a single dielectric structure with a high refractive index from an eigenmode perspective. We find that scattering efficiency is mainly determined by the intrinsic phase governed by the leaky mode of the structure and the extrinsic phase induced by the frequency deviation from resonance. It is also demonstrated that the anapole modes in a two-dimensional cylinder and a three-dimensional sphere can only occur in the following two situations: (1) when only one mode is involved, the combined phase of intrinsic and extrinsic phase should be equal to 2π at a certain frequency (anapole frequency), which is very close to the resonance frequency. Generally, these types of anapoles are low-order anapoles since low-order resonant modes (i.e., magnetic (electric) dipole and quadrupole) are well separated. (2) If two or more leaky modes are involved, the combined phase for each mode must be 2π at the same frequency located between the two resonances. This corresponds to the high-order anapoles. It is also found that more anapole states will emerge with increasing refractive index. Our results may provide new perspectives for designing high-order anapoles with more freedom.

Funder

Shanghai Pujiang Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3