Graphene oxide based plasmonic nano-cavity sensor for high-performance refractive index sensing

Author:

Roy Bapita,Majumder Saikat,Chakraborty RajibORCID

Abstract

Abstract In this work, a nano-cavity based metal-insulator-metal structure is proposed which can be used as a high-performance refractive index sensor. The analysis of its sensing capabilities is done by determining the transmission characteristics of light through the insulating air channel between the metal layer. The loss in transmission in this channel is indicative of light leaking out of it and portion of it getting coupled to nano-cavities considered in the metal layers on both sides of the air channel. The analyte, whose refractive index is to be sensed, is kept in these nano-cavities. The basic structure is modified by introducing graphene oxide (GO) on the inner wall of the nano-cavity, which further improves the confinement of light in the nano-cavities. It is also shown that increasing the number of nano-cavity duos enhances the transmission loss through the waveguide and as a result the light energy confinement in the cavity increases. Calculated values of sensitivities and Figure of Merit of the proposed sensor structure are much higher than similar works done previously. The uniqueness of the work is two-fold; namely use of graphene oxide as an inner layer of the nano-cavity improves the sensitivity of the sensor and secondly calculating the waveguide transmission to indirectly determine the confinement of light energy in nano-cavity simplifies the analysis of the performance of the proposed sensor. The structure is simple and can be easily fabricated using a standard fabrication process.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3