Bit error rate of M-pulse position modulated laser beams for vertical links operating in weak oceanic turbulence

Author:

Gerçekcioğlu HamzaORCID,Baykal YahyaORCID

Abstract

Abstract The on-axis scintillation index of laser beams is investigated by employing the Rytov method in a weakly turbulent oceanic medium for up/downlink coupling of laser communication between any underwater vehicles or divers. For vertical links, the formulation of the on-axis scintillation index of laser beams is derived analytically and evaluated for plane, collimated Gaussian and spherical beams in specific mediums, including the Atlantic Ocean at mid and low latitudes associating temperature and salinity changes at low latitudes, at mid latitude-summer and at mid latitude-winter. Using the scintillation index, bit error rate (BER) performance of M-pulse position modulation is investigated for these types of laser beams. The variations of the scintillation index against the uplink/downlink propagation distances, source size and zenith angle are examined, and BER variations versus the Kolmogorov microscale and the symbol orders, and results are compared. It is noted that the behavior of the scintillation index that depends on the relative strength of temperature and salinity fluctuations which changes in depth, is different for uplink/downlink and for each latitude due to its distinct characteristics. The source size that minimizes the scintillation index values is in the range of about 0.1 cm–0.2 cm for all latitudes.

Publisher

IOP Publishing

Reference57 articles.

1. Scintillation measurements performed during the limited visibility lasercom experiment;Kim;Proc. SPIE,1998

2. Underwater acoustic sensor networks: research challenges;Akyildiz;Ad Hoc Netw.,2005

3. Data collection, storage, and retrieval with an underwater sensor network;Vasilescu,2005

4. 1 Mbps underwater communications system using LEDs and photodiodes with signal processing capability;Simpson,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3