Resolved terahertz spectroscopy of tiny molecules employing tunable spoof plasmons in an otto prism configuration

Author:

Yao HaiziORCID,Zhang WeiweiORCID,Liu WenfuORCID,Mei HongyingORCID

Abstract

Abstract Sensitive detection of terahertz fingerprint absorption spectrum for tiny molecules is essential for bioanalysis. However, it is extremely challenging for traditional terahertz spectroscopy measurement because of the weak spectral response caused by the large mismatch between terahertz wavelengths and biomolecular dimensions. Here, we proposed a wideband-tunable metal plasmonic terahertz biosensor to detect tiny biomolecules, employing attenuated total reflection in an Otto prism configuration and tightly confined spoof surface plasmons on the grooved metal surface. Benefitting from the plasmonic electric field enhancement, such a biosensor is able to identify the molecular terahertz fingerprints. As a proof of concept, a hypothetical molecule modeled by the Lorentz model with two vibrational modes is used as the sensing analytes. Simulation results show that the absorption of two vibrational modes of analytes can be selectively enhanced up to ten times by plasmonic resonance, and their fingerprints can be resolved by sweeping incident angle in a wide waveband. Our work provides an effective approach for the highly sensitive identification of molecular fingerprints in fields of biochemical sensing for tiny analytes.

Funder

Science and Technology Department of Henan Province

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. Biomedical applications of terahertz technology;Pickwell;J. Phys. D: Appl. Phys.,2006

2. Terahertz technology in biology and medicine;Siegel;IEEE Trans. Microw. Theory Tech.,2004

3. Terahertz biosensing technology: frontiers and progress;Menikh;Chemphyschem,2002

4. Applications of terahertz spectroscopy in biosystems;Plusquellic;ChemPhysChem,2007

5. Surface-enhanced infrared spectroscopy using resonant nanoantennas;Neubrech;Chem. Rev.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3