Probing solvent dependent femtosecond transient coherent oscillations to reveal interfacial dynamics

Author:

Das D KORCID,Makhal KORCID,Goswami DebabrataORCID

Abstract

Abstract Probing transient states in molecules having vibronic transitions with femtosecond (fs) laser pulses often results in coherent oscillations either in the ground state, the excited states, or both. We find such coherent oscillations are highly solvent-dependent and provide a holistic overview of the pump-probe experiments for ultrafast dye dynamics at interfaces. For molecules dissolved in single solvents, modulations in oscillations occur due to transitions in the sub-vibrational levels of the electronic state. For binary solvents, in particular, these modulations are strongly sensitive to solvent compositions. The changes induced by various solvent compositions are drastic enough to act as a control parameter for dynamical control processes. We demonstrate an end-to-end understanding of ground-state coherent oscillations, vibrational cooling, ground-state recovery processes, and excited-state dynamics through a series of experiments. We further present a methodology for establishing such control using near-infrared dyes to measure the oscillations with fs pump-probe techniques. In the case of immiscible binary solvents, the same method allows us to investigate the liquid–liquid interface. Our control methodology is validated by an experiment using a cyanine dye dissolved in dimethyl sulfoxide, interfaced with neat diethyl-ether. The dye dynamics are retarded on moving from the bulk dye solution towards the interface with the neat diethyl-ether. When sampled along the direction of the vector pointing from the bulk towards the near interface, monotonically decreasing time constants are obtained. This result strongly suggests the importance of microheterogeneity in interfacial dynamics.

Funder

ISRO, SERB

SERB of the Govt. of India

STC

ISRO

Mrs. S. Goswami

Govt. of India

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3