Exploring the influence of nanocavity alignment on slow light generation via multiple EIT and Fano resonances in square lattice plasmonic silver nanostructures

Author:

Khan Haseeb Ahmad,Khan Adnan DaudORCID,Shah Syed Waqar,Chaudhry Muhammad Rehan,Azeem FarhanORCID,Ahmed Salman,Ahmad Khurshid

Abstract

Abstract In this paper, we present a comprehensive investigation of multiple electromagnetic induced transparency (EIT) and Fano resonances in a square lattice plasmonic nanostructure, which is composed of four silver slabs arranged in a square configuration, with each slab featuring a cylindrical nanocavity at its center. Initially, symmetric structures were analyzed to explore the potential for achieving EIT effects. Subsequently, we introduce deliberate symmetry breaking by precisely aligning the nanocavity in a controlled manner, first within a single slab, then in combinations of two, three, and all four slabs simultaneously. This controlled alignment strategy enabled the relaxation of dipole coupling selection rules, leading to the mixing of dipole and higher-order modes. The interaction between these modes resulted in the generation of multiple EITs and Fano resonances in the optical spectrum. Furthermore, the effective group index was evaluated for the optimal results obtained in the single, double, triple, and four symmetry reduced structures. High group index values were observed in the vicinity of the EIT and Fano resonances, with a remarkable maximum group index value of 6900 achieved within the EIT window. These findings highlight the significant potential of these structures in the design of slow light devices and sensitive sensors.

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3