Abstract
Abstract
Advances in the generation and the application of spatiotemporal optical vortices (STOV) are proceeding fast, but fundamental aspects of their nature remain obscure. Bliokh (2023 Phys. Rev. A 107 L031501) (PRA) and Porras (2023 Prog. Electromagn. Res.
177 95) (PIER) provide contradictory results on the transverse orbital angular momentum (OAM) carried by STOVs. We show that the results by Porras in PIER and by Bliokh in PRA refer to different STOVs and are all correct. In PIER, STOVs are elliptical at given cross section and time, or in space-time, but not in three-dimensional space. In PRA, STOVs are elliptical in space but not in space-time. This is evidenced from two dual, equivalent theories on the transverse OAM where a wave packet is seen in space-time evolving with propagation distance or in space evolving in time, that account for all values of the total, intrinsic and extrinsic OAM in PIERS and PRA. However, the intrinsic OAM with respect to the photon wave function center in PRA is not generally conserved, which advocates for the energy center in PIER as the STOV center. We argue that STOVs are generated in experiments to purportedly have elliptical symmetry in space-time. The values provided in PIER should then be taken as the reference for elliptical STOVs, and the theory therein to evaluate the transverse OAM of other wave packets. Hancock et al (2021 Phys. Rev. Lett.
127 193901; 2024 Phys. Rev. X 14 011031) erroneously attribute the transverse OAM of elliptical STOVs in space to the elliptical STOVs in space-time that they consider theoretically and can generate in their experiments.
Funder
the Spanish Ministry of Science and Innovation, Gobierno de España
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献