Tailoring surface plasmon-exciton polariton for high-performance refractive index monitoring

Author:

Srivastava TriranjitaORCID,Jha RajanORCID

Abstract

Abstract We report coupling between surface plasmon polariton (SPP) and surface exciton polariton (SEP) as hybrid mode; surface plasmon exciton polariton (SPEP) that can be utilized for highly sensitive and accurate refractive index monitoring. The proposed structure comprises of a thin layer of organic semiconductor; J-aggregate cyanine dye (5,5′,6,6′-tetrachloro-1,10-diethyl-3, 30-di(4-sulfobutyl) benzimidazolo-carbocyanine (TDBC)) having, strong dipole moment resulting from linear chain-like structure, over plasmon active metal coated on prism. It is found that due to SPEP excitation, the sensitivity of the proposed refractometer is ∼84% higher as compared to that of conventional plasmonic sensor at λ = 532 nm and has high tolerance towards 10 nm of metal thickness. The wavelength dependent performance analysis of SPEP modes reveals that for high energy SPEP (mode-1 at λ = 532 nm), sensitivity as well as figure of merit (FOM) of the proposed refractometer is ∼80% and ∼200% respectively higher than low energy SPEP (mode-2 at λ = 633 nm). We believe that the study will open a new window for a diverse range of biochemical and gaseous sensing applications.

Funder

Ministry of Human Resource Development

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3