Optical properties of two-dimensional materials with tilted anisotropic Dirac cones: theoretical modeling with application to doped 8-Pmmn borophene

Author:

Margulis Vl AORCID,Muryumin E E

Abstract

Abstract The optical reflection, transmission and absorption properties of borophene, a newly discovered two-dimensional material with tilted anisotropic Dirac cones, are explored within a simple electronic band structure model of 8-Pmmn borophene, proposed by Zabolotskiy and Lozovik (2016 Phys. Rev. B 94 165403). It is assumed that the borophene layer is deposited on a dielectric substrate, such as Al2O3, and that the borophene’s electron density is controlled by an external gate voltage. The reflectance, transmittance and absorbance of the borophene layer, the conduction band of which is filled with electrons up to the Fermi level, are calculated against the frequency of the incident radiation, as well as on the angle of its incidence on the layer. Considered are the two principal cases of the incident radiation polarization either parallel to or normal to the plane of incidence. We reveal that the optical characteristics of 8-Pmmn borophene are distinctly different for the above two cases at all angles of radiation incidence, excepting the grazing incidence, for which the borophene layer is found to behave like a mirror regardless of the wave polarization. The results obtained indicate the possibility of visualizing the borophene layer deposited on a dielectric substrate by observing the minimum reflectivity of this layer at a certain angle incidence (called the quasi-Brewster angle) of the p-polarized radiation, which may differ by a value of about ten degrees from the Brewster angle of the substrate.

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3