Red-emitting and antibacterial carbon dots for cellular imaging and skin wound healing

Author:

Karami Sara,Shamsipur Mojtaba,Barati Ali,Fartootzadeh Reza,Molaabasi Fatemeh,Alipour Mohsen,Radi Hamid Cheraghian

Abstract

Abstract Carbon dots (CDs) as a new type of fluorescent nanomaterials have attracted considerable attention from researchers in chemistry, biology, and materials science. Here, we employed a hydrothermal method for synthesis of red-emitting and antibacterial CDs displaying an excitation-independent emission characteristic with a maximum emission intensity at 610 nm (pH 7.4). The synthesised CDs exhibited a high capability for bioimaging in HeLa cells, because of their negligible cytotoxicity and acceptable red photoluminescence. Moreover, the antibacterial activity of CDs against P. aeruginosa was studied and showed a minimum inhibitory concentration (MIC) of 256 μg ml−1. Further experimental results showed the high ability of the CDs to heal skin wounds in the rat model. According to the observations, wound healing in the presence of the CDs was calculated four days faster with 20.48% better performance than the control group.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3