Author:
Do T Anh Thu,Nguyen Duc Toan,Ho Truong Giang,Giang Hong Thai,Pham Quang Ngan,Nghiem T Ha Lien,Nguyen Trung Hieu,Man Minh Tan
Abstract
Abstract
A hydrothermal method was used to synthesise WO3 nanotubes, which were analysed using transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman, and UV–Vis spectroscopy for morphological, structural, and optical properties. TEM revealed nanotubes several micrometers long with a diameter of 10–15 nm. These nanotubes effectively removed Rhodamine B (RhB) and Cr(VI) under visible light. The high photocatalytic efficiency of obtained WO3 material was attributed to the large surface area provided by the unique configuration in the form of nanotubes. The study identified reactive species through scavenger tests and proposed a photocatalytic mechanism. This approach offers efficient photocatalysts for the simultaneous sunlight-driven degradation of organic and inorganic pollutants in wastewater.