Synthesis and mechanistic approach to investigate crystallite size of NbSe2 nanoparticles

Author:

Bharucha Shivani R,Dave Mehul S,Giri Ranjan Kr,Chaki Sunil H,Limbani Tushar A

Abstract

Abstract Niobium diselenide (NbSe2) belongs to the class of transition metal dichalcogenides (TMDCs) and exhibits peculiar features such as charge density waves, superconductivity, and periodic crystal lattice distortion. The main focus of the article is the synthesis and characterisation of NbSe2 NPs utilising the wet chemical precursor solution route at room temperature, followed by in-depth x-ray diffraction (XRD) characterisation and analysis using the aforementioned techniques. The EDS result demonstrated that the NbSe2 NPs are devoid of impurities and close to stoichiometry. The sample has a crystalline hexagonal structure with the lattice constants a = b = 3.443Å, c = 12.576 Å, and α = β = 90°, γ = 120°, according to the XRD results. The work emphasises the need of comprehending how lattice strain and crystallite size affect physical attributes. x-ray peak broadening was used to study the epitaxial crystallisation of NbSe2 NPs. Various methods for determining crystallite size, such as the Williamson–Hall (W-H) method, Debye–Scherrer plots, uniform deformation model (UDM), uniform stress deformation model (USDM), uniform deformation energy density model (UDEDM), size strain plot (SSP) method, and Halder-Wagner (H-W) method, are employed to comprehensively analyse the nanoparticle characteristics, and additionally, high-resolution transmission electron microscopy (HRTEM) is employed to visualise the morphology and particle size distribution of the synthesised NbSe2 NPs. Physical parameters, including lattice stress, strain, and energy density, are also evaluated more precisely from the XRD pattern reflection peaks. The outcomes shed light on the interplay between crystallite size, lattice strain, and their effects on the material’s properties and showed excellent intercorrelation of the average crystallite sizes as estimated by employing various methods.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3