Development and application investigation of an ICSHG 532 nm diode-pumped solid-state laser system

Author:

Khoa Phan Thanh Nhat,Tu Trung Chan,Nguyen Tran Thuat,Nguyen Thanh Chien,Dang Mau Chien

Abstract

Abstract A diode-pump solid-state laser system emitting a 532 nm beam has been developed. The pump source is an 808 nm diode laser, which has gained wide acceptance in research as well as in commercial production due to its effectiveness and reasonable price. The active medium was chosen to be Nd:YVO 4 (neodymium-doped yttrium orthovanadate), a material with many advantages over traditional Nd:YAG (neodymium-doped yttrium aluminum garnet) such as a low lasing threshold and linearly polarized beam. However, the thermal conductivity of Nd:YVO 4 is not as good as Nd:YAG, thus the thermal lens effect inside Nd:YVO 4 under high pumping intensity becomes severe and detrimental to the laser performance. Our work showed that careful adjustments of Nd:YVO 4 temperature as well as of the cavity's parameters played an important role in the performance of the laser. Potassium titanyl phosphate (KTP), a nonlinear optics crystal, was used to convert the fundamental 1064 nm laser radiation from Nd:YVO 4 into 532 nm. The 532 nm laser beam has been successfully proven to cut wood, plastic and aluminum.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3