The cell viability assay analysis and physicochemical characterization of porous hydroxyapatite scaffold using honeycomb and paraffin wax as polymeric porogen for bone tissue engineering

Author:

Sari W,Sari M,Yusuf Y

Abstract

Abstract To fabricate and characterize the porous hydroxyapatite-based scaffold, honeycomb as a natural polymer (HA/HCB) and paraffin wax (HA/Wax) were used. The fabrication of scaffold using the porogen leaching method was varied temperatures between 700, 900, and 1100 °C. Theoretically, the temperature of calcination influenced the morphology of the scaffold, crystallite size, functional group, and porosity. According to the previous study, the crystallite size of the polymer scaffold is less than 100 nm. The HA-based scaffold was analyzed by the Energy Dispersive X-Ray Spectroscopy (EDS), Scanning Electron Microscopy (SEM), X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and tested by the cell viability. According to the XRD results, the crystallite size of HA/HCB scaffold decreases, while scaffold HA/Wax crystallite size tends to decrease when calcination temperature increases. As calcination temperature increases, porosity tends to be small for both HA/HCB and HA/wax scaffolds. The scaffold HA/HCB 900 °C has interconnected pores, uniform, and small porosity. In contrast, the scaffold HA/Wax 900 °C has fewer interconnected pores and non-uniform particles. The FTIR result of the HA/HCB 900 °C has C-H functional group, affecting cell viability. Through MTT (3-(4,5-Dimethylthiazol-2-yl)−2,5 diphenyltetrazolium bromide) assays, the cell viability value of the HA/Wax 900 °C was greater than the HA/HCB 900 °C for 48 h incubated time. It is caused by the alkane chains on HA/HCB, causing the death of cells. Considering cell viability assay studies for the nanocomposite scaffold, the obtained results confirm the non-toxicity of the material.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3