Enhanced formic acid electro-oxidation reaction over Ir,N-doped TiO2-supported Pt nanocatalyst

Author:

Huynh Tai Thien,Huynh Quyen,Huynh Ngoc-Han T,Pham Hau Quoc

Abstract

Abstract In this work, we prepared an Ir,N-doped TiO2 nanomaterial via a facile HNO3-assisted hydrothermal process that was used as an advanced support for nano-sized Pt nanoparticles (NPs) for the formic acid oxidation reaction (FAOR). The physical and electrochemical behaviours of the as-made Pt/Ir,N-doped TiO2 catalyst were systemically investigated through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopes coupled with energy dispersive X-ray analysis (FE-SEM/EDX mapping), transmission electron microscopy (TEM), linear sweep voltammetry (LSV), Tafel slope, CO-stripping, and chronoamperometric (CA) test. The Pt NPs (ca. 3 nm) were anchored on the Ir,N-doped TiO2 support, being formed by a mixture of rutile and brookite with a particle size of several ten nanometers. Due to the small size and uniform distribution of Pt NPs, the Pt/Ir,N-doped TiO2 catalyst had an electrochemical surface area of 79.88 m2 g−1, which was greater than that of the commercial Pt/C (77.63 m2 g−1). In terms of the FAOR, the Pt/Ir,N-doped TiO2 catalyst showed a negative FAOR onset potential, high current density (11.85 mA cm−2), and superior CO-tolerance compared to the commercially available catalyst. Also, the as-made catalyst possessed high electrochemical durability after 3600 s for testing. The enhanced FAOR efficiency was assigned to the formation of a dual-doping effect and strong interplay between Pt and TiO2-based support, which not only improved the electron transfer but also weakened the adsorption of carbonaceous species, thereby boosting the reaction kinetics. This study could open up a facile but effective strategy to promote particular electrochemical applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3