Prospect of core-shell Fe3O4@Ag label integrated with spin-valve giant magnetoresistance for future point-of-care biosensor

Author:

Wibowo Nur Aji,Harsojo ,Suharyadi Edi

Abstract

Abstract Magnetic-based biosensors are the analytical instruments that convert the biological recognition into the electrical signal through the generating of the stray-field of the magnetic nanoparticles (MNPs) attached to the biomolecule target. The magnetic biosensor feature relies on the transducer and the MNPs label selection. Recently, the biosensor with a point-of-care feature is the most expected device in the nowadays medical diagnostic field. So that, a review of the recent research related to the novel integration of magnetoresistance-based transducers with MNPs for biosensor application is vital for the point-of-care diagnostic development. Hence, the basic principle of biosensors and the giant magnetoresistance (GMR) with exchange bias phenomena are introduced. Furthermore, we provide a review of the cutting edge method in GMR biosensor with spin-valve structure (SV-GMR) which is integrated to MNPs for biomolecule labelling. As review results, among the nano-sized magnetoresistance transducer, the SV-GMR has some predominance, i.e. electrical robustness and moderate magnetoresistance ratio. Meanwhile, as compared to the other proposed MNPs such as pure Fe3O4, Fe2O3, and hybrid Fe3O4-graphene, the core-shell Fe3O4@Ag is potent to be used, which offers not only moderate saturation magnetisation but also good protein affinity, antimicrobial activity, and minimal cytotoxicity. According to the sensor performance comparison, the usage of Fe3O4@Ag for biomolecule labelling in synergy with SV-GMR transducer is prospective to be developed. The Ag shell espouses the protein immobilisation to the surface of the MNPs label that improves the sensor sensitivity. Furthermore, the SV-GMR possessed two modes of the Fe3O4@Ag rapid detection, which are through the moderate voltage change and the switching field shifting. Meanwhile, the concentration increase of Fe3O4@Ag can be well quantified. Moreover, the Fe3O4@Ag/SV-GMR system had a low operating magnetic field with rapid data collection. In conclusion, the Fe3O4@Ag/SV-GMR biosensor system is believed to be applied as a real-time, portable, and cost-effective biosensor.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3