Author:
Zhang Qi Dong,Piro Benoît,Noël Vincent,Reisberg Steeve,Pham Minh-Chau
Abstract
Abstract
In this paper, we first review different strategies reported in the literature to elaborate electrochemical DNA sensors based on carbon nanotubes. Then we report a new strategy to graft both redox and DNA probes onto carbon nanotubes to make a label-free DNA sensor. Oxidized single-walled carbon nanotubes are first immobilized on a self-assembled monolayer of cysteamine. Then a redox probe, a quinone derivative 3-[(2-aminoethyl) sulfanyl-5-hydroxy-1,4-naphthoquinone], is grafted onto the free carboxylic groups of the nanotubes. After that, for DNA probe grafting, new carboxylic sites are generated via an aryl diazonium route. After hybridization with a complementary sequence, the conformational changes of DNA could influence the redox kinetics of quinone, leading to a current increase in the redox signal, detected by square wave voltammetry. The system is selective, as it can distinguish a single mismatched sequence from the complementary one.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献