Biogenic synthesis of silver, gold, and palladium nanoparticles using moringa oleifera seeds: exploring photocatalytic, catalytic, and antimicrobial activities

Author:

Prabhu M S Anandha,Sheela G Edwin,Mohammad Abeer M,Hegazy Rabab A,Florence S Sasi,Sarojini V

Abstract

Abstract In this study, we explored the green synthesis of metal nanoparticles (Ag-NPs, Au-NPs, and Pd-NPs) using Moringa oleifera seed (MOS) extract, which is known for its nutrient density, antioxidant properties, anti-inflammatory effects, and potential benefits in managing cholesterol, blood sugar levels, as well as promoting digestion, skin, and hair health. The nanoparticles’ size was controlled by varying the concentration of MOS extract. The successful formation of Au-NPs and Ag-NPs was confirmed through surface plasmon resonance (SPR), while the absence of absorption at 420 nm indicated the reduction of Pd2+ ions to Pd0, affirming the synthesis of Pd-NPs. The nanoparticles exhibited mono-dispersed, spherical shapes with confirmed crystallinity. Sizes were determined as 28 nm for Pd-NPs, 5 nm for Au-NPs, and 19 nm for Ag-NPs. The MOS extract’s phenols and proteins played a crucial role in reducing and stabilising Ag-NPs, Au-NPs, and Pd-NPs. Notably, the synthesised nanoparticles demonstrated strong antimicrobial activity, particularly against Salmonella typhi, making them potential antibacterial agents. The catalytic efficiency of Au-NPs, Ag-NPs and Pd-NPs was studied using the reduction of 4-Nitrophenol (4-NP) by NaBHto 4-Aminophenol. Additionally, Au-NPs showed enhanced photocatalytic degradation rate constant and catalytic reaction rate constant of 0.0038/min and 0.261/min respectively, due to their small size and increased surface area. By combining a green synthesis approach with an in-depth analysis of properties and diverse applications, this study provides valuable insights into the immense potential of MOS-assisted metal nanoparticles for various technological and environmental advancements.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3